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Linear equations of perturbed motion of a thin-walled elastic shell partially filled with 

a heavy compressible fluid considered in the acoustic appro~mation are derived ; the 

principal [force] vector and the principal moment of the reactions exerted by the shell 
on the “carrying body” are determined. Perturbed motion with small vibrations is char- 
acterized by the displacement of a certain point attached to the rigfd shell fastening 

contour, by rotation relative to this point, and by elastic displacements expressed as an 

expansion in the proper vibration modes of the fastened fluid-containing shell. The 
natural frequencies and vibration modes of a fluid-containing shell are determined by 
means of a variational principle. 

Allowance for the compressibility of the fluid makes it possible to consider vibrations 
in the acoustic frequency spectrum. Moreover, calculations show that it may be neces- 
sary to make allowance for it in calculating the lower frequencies of the elastic vibra- 
tions of the shell, e. g, of the ax~mme~ic vibrations of relatively thick shells of revo- 
lution. Allowance for gravity is necessary in considering vibrations in the frequency 
spectrum of gravitational surface waves and vibrations of flexible fluid-containing shells. 



380 E. I. GrigoIiuk and F. N. ShkIiarchuk 

1. Pormulrtfon of the problem, Let us consider the perturbed motion of 
a “carrying” body with an attached thin-walled elastic shell containing an ideal com- 

pressible fluid. The shell is fastened to the body along the contour r which we assume 
to be nondeformable. 

ln order to avoid limiting ourselves to some specific model of a carrying body (e. g. 

an absolutely rigid solid, we propose to isolate the fluid-containing shell along the contour 
r, write the equations of perturbed motion for the shell and fluid, and determine the 

principal vector T and principal moment H exerted by the shell on the carrying body 
along the contour r during perturbed motion. This will enable us to write out the equa- 

tions of perturbed motion of the carrying body with allowance for the reactions T and 

R, and thus to obtain the closed system of equations of perturbed motion. 

The perturbed motion of a ~uid-conta~~g shell can be characterized by the vector 
u of small displacements of the shell and by the potential CD of small displacements of 
the fluid in the coordinate system OxIxsx9 ; the latter experiences translational motions 

which coincide with the unperturbed motions of the body. We make the axis Ox, per- 

pendicular to the unperturbed surface U of the fluid ; this makes the direction of Uxt 

opposite to that of the body-force vector g. 
The equations of perturbed motion of a fluid-containing shell are obtainable with the 

aid of the Lagrange variational principle 

(1.2) 

Here fl is the potential energy of the shell and the compressible fluid system; m, p , 

C are the specific mass of the shell (its mass divided by the area of its middle surface), 
the density of the fluid, and the velocity of sound in the latter, respectively ; S and o 

are the shell surface and the free surface of the fluid ; T is the volume occupied by the 

fluid: v is the unit vector of the exterior normal of the surface bounding the volume ‘r; 
gH/c2< 1, pa:const. 

The quantity KT, in (1.2) is the potential energy of shell deformation in perturbed 
motion with allowance for the forces which arise in its middle surface during unperturbed 
motion ; in addition, II, includes that part of the potential energy of the body forces of 

the fluid which depends solely on the shell displacements and can be determined by 

assuming that the fluid surface is fixed. The potential energy of the body forces of the 
fluid associated with displacements of the free surface is represented by the second term 

in expression (1.2) ; the third term allows for the potential energy of compression of the 
fluid in the acoustic approximation. 

The variation of the work performed by the specific surface load q applied to the shell 
with allowance for the reactions T and H between the shell and carrying body is given by 

where ua and f/s are the displacement vector of some point 0’ rigidly attached to the 
contour r and the vector of a small rotation about this point characterizing the motion 
of the undeformed shell, 
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Equation (1.1) can be used only in the event of fulfillment of kinematic boundary 
conditions at the shell edges and of the kinematic boundary condition 

i%D/tYv-vu=0 at So (1.4) 
at the wet surface & of the shell; the continuity condition 

A@==0 B’S (1.5) 

must be fulfilled in the case of an incompressible fluid (C -+ CO) . 

2. Condition, of orthogonrlity of the nrturrl vibration moder 
of a fluid-containing #hell. Let us suppose that we know the natural frequen- 

cies o,and proper vibration modes u,,, d$, of a fluid-containing shell, and that these 

frequencies and modes satisfy the equations 

2 -vu, = 0 on SO, av 
au 

g av 11 - O”,O, = 0 on ~5 

L (U,) - C02,rnU, - 02nepOnv = 0 on S (2.1) 

and the corresponding boundary conditions at the shell edges. The symbol L( l . .) de- 

notes the linear selfadjoint differential operator of the shell equations associated with 
the potential energy n,, 

an,=~~L(ll)budS 
8 (2.2) 

provided u satisfies all the boundary conditions at the shell edges; a = 1 at S,and 

e = 0 at S - So. 
We derive the orthogonality conditions by means of the Lagrange principle for 6&O, 

a~+~~mu”audS$-p~~~V~“aV~dr=O 
6 t (2.4 

Let US suppose that the free vibrations take the form of a superposition of the nth and 
m th proper modes, 

U = Qnun + QmUm9 @ = Qn@n + Qm@m (2.4) 

qn (t) = Qn” COS (%t + IL)* Qm (t) = !?m” COS (@rnt + Ym) 

Substituting (2.4) into (2.3) and taking account of the arbitrariness of the variations 
dq,, and aqm,we obtain the two equations 

r,[ kij - 0j2 ($5 mUiUjdS + p S 1s VQiVcPjdr))] Qj = O (’ =nD ml 
S 

(2.5) 
-n,m T 

where k,j are the coefficients of the expansion of the potential energy 

II = ‘12 2 2 kij9i9j 
i j 

Let us set first qn # 0, qm G 0 and then qn 3 0, qm =# 0, in Eqs. (2.5). This 
yields 

k.. t1 - 0j2 (u mu,ujdS + P 5 S 1 VcDiV@jdt ) = 0 
t 

(2.6) 

(i = n, m; i = n, m) 
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Writing out Eq. (2.6) for i = n, j = M ,subtracting Eq. (2.6) for i = m, 1 = n 
from the result, and taking advantage of the symmetry of the coefficients lc,, (k,, = 

= k,,), we obtain the conditions of orthogonal&y of the proper modes for n # m , 

(2.7) 

In addition, Eq. (2.6) for i = n, i = m (n # m) implies that k,, = 0, or, with 
allowance for (1.2), (2.2). that 

\$L(u,,)u,,,dS+pg SS~.~da+pc’SSSA~“A~rndt=O (24 
0 + 

For i = j = n Eq. (2.6) gives us 

k,, = m,2tn,,, m, = $ s mu,2dS -I- p 1s 1 (V(I),)2 dr 
I!3 1 

(2.9) 

for the virtual mass associated with the nth natural vibration mode. 

Expressions (2.Q (2.8), (2.9) can be replaced by several equivalent relations obtain- 
able by way of Eqs. (2.1) and Green’s transformation formula for a volume integral. 

3. EqurtfonI of motion of L fluid-contrlnfng Ihell. The displace- 
ment vector of points of the middle surface of the shell and the fluid particle displace- 
ment potential can be written as 

co 

u=u,+%Xr’+ t) qnun, 0 = uor’ + $ul + ; q*@* (3.1) 
-1 7X=1 

(r’ = r - r,. = x1’& + x2’i2 + s,‘i,) 

Here r and r. are the radius vectors of the point in question and of the point 0’; i,, 
i,, i, are the unit vectors of the coordinate system 0x,x2x,; x1’, x2’, x3’ are tile coor- 

dinates measured from the point 0’; u,, Q,.are the proper vibration modes of the 

fluid-containing shell fastened along the contour, u,,~ = 0; q,, (t) are the generalized 

coordinates characterizing the deformations of the shell and fluid and the wave motions 
of the free surface of the fluid. 

We assume that the vector function \zI = Ylil j-Y.& + Y,i, describing the mo- 
tion of the fluid during rotation of the undeformed shell is harmonic in the domain T 
and generally arbitrary at the free surface (T. The wave equation in T and the dynamic 

boundary condition at u are satisfied by virtue of the generalized coordinates qn, since 
the latter are the coefficients of the system of functions mD, complete in T and at so 

+ (J. This means that UI satisfies the following equation and boundary condition : 

AY = 0 in Z, 2!!? = r’xy 
6b 

on So (3.2) 

The function w at the surface u can be subjected to one of the following conditions: 
1) as in p, 21 the function Y consists of Zhukovskii potentials describing a motion of 

the fluid in which the free surface remains flat and rotates together with the undeformed 
shell; here $P / dv = r’ X v at a; (2) as in [S], the function q describes a motion 
during rotation of the undeformed shell such that the free surface of the fluid remains 
plane and parallel to the unperturbed free surface, PP / ih = c at CJ, where 
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0 = clil + csi, + cai, can be determined from the condition of a constant fluid 

volume, 
cr = 0, 

1 
ca = s, ss Xg’dS, 

1 
%= -Fsc X*‘& 

B 0 d 

3) in calculating “rapid” motions of the shell when practically no lower modes of the 
gravitational waves at the free surface are excited and when the influence of g is negli- 

gible, it is convenient to subject the function W to the condition v = 0 on cr. 
We begin by calculating the variation of the work performed by the inertial forces of 

the shell and fluid. Making use of expansions (3.1). recalling (3.2) and orthogonal&y 
conditions (2. ‘7), and carrying out the appropriate transformations, we obtain 

+ [Ib”S’+ $,.J + i q**,,%,,] 6% + 5 [uFm,,, + tfo”&, + q,,%,] 69, (3.3) 
n==l n=1 

Here m,is the mass of the shell and fluid ; S and J are the tensor of static moments 
and the inertia tensor, respectively (S’ is the associated tensor), 

c 0 ss - S¶ 
S z1: - ss 0 Sl 

sa -hi 0 1 
+ iSjkl 

J = IJjkol + [Jjkl 

Jjtp = ss m (8jkr” - Xj’Xk’) dS, Jjk = 
8 

(erg is the Kronecker delta ; j, k = 1,2,3) 

(3.4) 

Now let us write out the expression for the variation of the potential energy of the 
shell and fluid. Substituting expansions (3.1) into (1.2) and recalling orthogonality con- 

dition (2.8) for the proper modes, we obtain 

(3.5) 

where 

(3.6) 
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(corn ) 

With allowance for (3.1) and for the fact that u, 1 r = 0, we can rewrite expression 
(I. 3) for i3A as 

dA = (P - T) ho + (M - II) &lo + 5 Q,Sq, (3.7) 
n-1 

P = {j @St M =&‘xq)dS, Q,=&PN (3.8) 
S S 

Substituting expressions (3.3). (3.5). (3.7) into Eq. (1.1) and equating the coefficients 
of the arbitrary variations &a, 80, , &q, to zero, we obtain an expression for the prin- 

cipal vector and for the principal moment of all the forces exerted by the vibrating 
fluid-containing shell on the carrying body 

w 

T =- 
( 

mob*’ + SOo” -I- 2 monqn” 
n=1 

> -t P 

H =- 
( 

S’u,” + JOO” + 5 lo,,qn” + Coo + ii xonqn ) + M (3.9) 
n-1 n-1 

and also the equations of the vibrations of the fluid-containing shell in normal coordi- 
nates, 

mO,,uO* + &J&** + m,g,” -i- S& + on2rn,qn r= Qn (3.10) 

(tz=i, . . ..KJ) 

If the carrying body is an absolutely rigid solid, then it can be assumed attached to 
the shell, and the integration involved in computing the mass characteristics m,, S, 
J, c, the principal vector P, and the principal moment of external moment M must 
be extended to the volume of the solid; in this case Eqs. (3.9) for T = .H = 0 become 

the equations of motion of a solid carrying a thin-walled fluid-containing shell. The 

coefficients in Eq. (3.10) remain unchanged. 
Equations (3.9), (3.10) for T = H = 0 are of the same form as the equations of 

motion of an absolutely rigid solid with a cavity partly filled with ideal incompressible 
fluid p-43, and become the latter if the shell is assumed to be nondeformable and the 

fluid incompressible. The coordinates gn then describe the wave motions at the free 

surface. 

4. A shell of rsvoiutfon. Let us express the vector of displacements of the 
middle surface of a shell of revolution in terms of its components along the tangents to 

the coordinate lines v and ti (Fig. 1) and along the exterior normal v to the surface’at 
point under consideration, u = UC1 + vea + !JfV 

where cl and CL are the unit vectors of the coordinate lines ‘p and 9. 

The potential energy n,, in the general case can be expressed as a sum of three com- 

ponents , no = “‘0” + r$s) + nl;” (4.1) 

Here XI:) is the potential energy of shell deformation on the basis of the Kirchhoff 

hypothesis f5] ; “6”’ is the potential energy of the forces in the middle surface which 
arise in unperturbed motion ; II’: is the potential energy of the body forces of the fluid 

during perturbed motion in the case of a stationary free surface. Following 163, we express 
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(4.2) 

Fig. 1 

For a shell of revolution we have 

V 1 aw 
6s 

R=&sinv 
=-c--, 

RI R a0 ds = RtRdcpdO 

(4.3) 

Here RI and Ro are the principal radii of 

curvature of the middle surface of the shell. 
The hydrostatic pressure acting on a shell 

whose axis is parallel to the axis Otlis given 
(4.41 

“‘p = pg [(If - q) - (u sin cp - w c0s cp)] 
Here z, is the coordinate of a point on SO 

in unperturbed motion; q = a at a. The variation of the work performed by the hydro- 

static pressure in unperturbed motion with allowance for the change dS* = dS (i + 
+ e-, + es) in the area of the shell elements as a result of deformation can be written as 

6A, = 

b 

p [6w + 616~ + 6&l (1 + a+ ed dS 
* 

. 

substituting the pressure P (4.4), the angles of rotation e1 and 6~ (4,3), and the strains 

into this expression and retaining only the linear terms in front of the displacement vari- 
ations, we obtain 

6A, = pg \ 5 (If - .n) GwdS + \ \ (~16~ -I- P& + p&9 dS 
‘SO 

. . 
so 

(4.5) 

aw 
1 

I 
u- acp,, c 

1 allI \ 
Pa=Plw--1)x ,V-wcp) 

-%- + [sin cp - (If - 51) & ctg cp] II - 

(4.6) 

Here pl, pe, p* are the components of the reduced load acting on the shell due to 
hydrostatic pressure during perturbed motion. 

Expression (4.5) becomes 
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2 a 
f-~=*~sQ+ RRt (3rp --[(H--m) Ru]w}dS (4.8) 

The second term iu expression (4.7) for shells closed below at g = zie is always equal 
to zero, and in this case we have 

In accordance with (4.X] the operator L (...) can ako be expressed in rerms of three 
components, A (u) = .L~)(u) + f;(s) (u) + L(s) (u) 

and by virtue of (4.8). (4.9) 
L@! (u) = - e (pla + p2e2 + ~$4) 

is selfadjoint, as are L(” (uu) and L(@ (u). 
When applied to a shell of revolution fastened ax~ymme~i~ally along the closed con- 

tour I’ with the point 0’ pkced on the sheil axis, system of equations of perturbed motion 
(3.91, (3.10) breaks down into equations describing the longitudinal axisymmetric vibra- 
tions, into two similar ~de~~defft systems of equations describ~g the transverse anti- 
symmetric vabrations in the planes U+ZS and OZ~+, and into equations of asymmetric 
vibrations unrelated to the motion of the shell as a rigid body. 

The equations of the lo~gitud~al vibrations are 

T1==-(m&G+ g rn*&)fP1 
n==l 

(4.12) 
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r- 

SSl 1 (cont. ) 

%ona = ~‘1” XV,, - W,,') cos?e - NsO $ V, sin 9 + W,) cos cp sin’ 0 --I- 

S 

+ + (~1” + NI”) ($ (I,, + -&- v,,’ + A V, cos q) sin cp sin2 01 do + 

+ P&T 
ss 

[(H-a) (- U,, cos2 0 + V+, cos cp sin28) - R W, COP 131 dS + 
SO 

Here zlt’ is the coordinate of the center of gravity of the fluid-containing shell meas- 

ured from the point 0’; U,, (9) coa 9, v,, (9) sin 9, W, (q) cos 9 are the displacement 
components of the n th proper antisymmetric vibration mode of the shell. 

The equations of the asymmetric vibrations when there are two or more meridional 

node lines on the surfaces S and o are 

m,,qi + ~,,2m,,e, = Q,, (n=l,...,co) (4.13) 

6. The mixed variational principle. Determination of the coefficents 

of Eqs. (3.9), (3.10) describing the perturbed motion of a fluid-containing shell requires 

knowledge of the vector function Y, of the proper vibration modes u,, (Dn , and of the 
frequencies e.+,of the fastened fluid-containing shell. 

The functions Y and ,cD, for arbitrary shells containing fluid volumes which do not 

admit of complete separation of variables in solving the Helmholtz equations can be 

determined only approximately. Solution of the problem by variational methods in dis- 
placements entails difficulties having to do with satisfying kinematic boundary condition 

(1.4) at the wet surface of the shell fl]. 
A Castigliano-type variational principle [B, 91 is an effective means of determining 

the natural frequencies and modes and also the function\Y in the case of undeformed 
cavities containing an incompressible fluid. This principle yields continuity equation 

(1.5) and kinematic boundary condition (1.4). It is also convenient for computing the 
vibrations of momentless inertialess liquid-containing shells 001. 

Vibration modes requiring allowance for the moment and inertial characteristics of 

the shell can be computed by a mixed variational principle in which the shell displace- 

ments are regarded as independent functions together with the pressure in the fluid. The 

mixed variational principle was applied to the case of an elastic body with cavities con- 
taining an incompressible fluid in pl]. 

Let us consider the mixed variational principle for computing the natural vibrations 

of an elastic shell containing a heavy compressible fluid. It is convenient to proceed 
on the basis of the Lagrange principle with undetermined multipliers in formulating 
various versions of the mixed variational principle. The undetermined Lagrange multi- 
plier in the equation of continuity of the fluid and in the kinematic boundary condition 
at the wet surface of the shell is the perturbed pressure in the fluid, which is equal to 
PO’W in the case of potential motion of the fluid during harmonic vibrations. 

If the fluid is compressible, the equation of continuity follows directly from 

Lagrange principle (1.1). All that is necessary in this case is that the work performed 
by the reactions in retaining kinematic constraints (1.4) at the wet surface of the shell 
and at the shell edges fi (u) = 0; (where (fl (...) is a linear algebraic or differential 
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operator) be added to Eq. (1.1); this work is given by 

Here Si are the reactions of the fastened edges of the shell.They can be represented in 
terms of linear differential expressions in u on the basis of static relations ; altemative- 
ly, they can be regarded as independent unknown functions, which is even more conve- 

nient in some cases. 

Allowing for potential energy @.a> and work (5. I)+ the equation of the variational 

Lagrange principle with undetermined multipliers in the case of free harmonic vibrations 
can be written in the form 

Variational equation (5.2) is not valid if the fluid is incompressible (E -, be) and if 
the harmonic character of the function (P is not a prerequisite, Thus, Eq. (5.2) is valid 

largely in the range of acoustic vibrations. 
Another version of the mixed variational principle which yields the cont~u~y equation 

for both a compressible and an incompressible fluid can be obtained by expressing the 

potential energy of compression of the fluid in terms of the pressure, i. e, 

(5.3) 

and by adding the work performed by the pressure in retaining the kinematic constraint 
(the continuity equation) to expression (5.1) ; this work is given by 

Anfm~* ss ( t5.4) 

Se 

Q, .,-~)dS+POISSfm(Bm+~~)~~~~lifi(U)s 

5 

Making use of (5.3) and (5.4), we can now rewrite (1.1) as 

Equations (5.2) and (5.3) make it possible to obtain the fluid dispiacement potential 
rft and the shell displacements u in the form of independent expansions in given coordi- 

nate fictions with ~known coefficients. This in turn makes it possible to reduce the 
problem of determ~ing the natural vibration frequencies and modes of a fluid-conta~~g 
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shell to a system of linear algebraic equations by the Ritz method. 
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ON WE CONTACT PROMO FOR A H~-PL~~ 

WITH FINITE ELASTIC ~INFORCE~T 
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The state of stress of an elastic rod of finite length not acted on by bending moments 
and fastened to a semi-infinite plate is considered. The problem has already been inves- 

tigated p- 31, but only for the simpler case where the load is applied to the rod ends. 
The present paper concerns the case where the force is applied to the center of the rod. 
The case where a heat source or a thermoelastic deformation center c4] is present at 
some poiut of the elastic half-plane is also considered. 

As in the aforementioned studies, the problem is stated in the form of a Prandtl integro- 
differential equation; methods for solving the latter are the subject of an extensive 


